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Prescribed Performance Robust Approximate
Optimal Tracking Control Via Stackelberg Game

Junkai Tan, Shuangsi Xue, Huan Li, Zihang Guo, Hui Cao and Dongyu Li

Abstract—Real-world applications of nonlinear systems track-
ing control are always challenging due to the existence of uncer-
tainties and disturbances. To design a robust optimal tracking
controller for uncertain nonlinear systems with disturbances and
actuator saturation, this paper investigates the prescribed per-
formance robust optimal tracking control problem. A prescribed
performance mechanism is constructed to convert the dynamics
of tracking error into transformed error dynamics, which keeps
the system’s operating states within specific bounds, ensuring
tracking with predefined error constraints. For the optimal track-
ing controller design, an optimal index is established to optimize
the performance of tracking control, and a robust optimal index
is established to optimize the disturbance effect on the tracking
error. To achieve robust optimal tracking control that minimizes
both optimal and robust optimal indexes, a Stackelberg game is
constructed, which provides a hierarchical game structure for the
optimal controller and the worst disturbance. The robust optimal
controller is approximated online using reinforcement learning
techniques. An actor-critic-identifier algorithm is designed to
approximate the optimal value function, optimal controller, and
drifted system parameters. Lyapunov theory is utilized to analyze
the closed-loop system’s stability. To demonstrate the effectiveness
of the proposed robust optimal control method, two numerical
simulations and a hardware experiment on a quadcopter system
are conducted. The experiment results demonstrate that our
method successfully achieves prescribed performance tracking
control when actuators are saturated and disturbances are
present.

Note to Practitioners—In this paper, the probelm of mixed
H2/H∞ prescribed-performance optimal tracking control for
nonlinear systems with input saturation is investigated. To con-
strain the operating states of the system within certain bounds,
the prescribed performance transformation is designed to achieve
tracking with predefined error constraints. For the optimal con-
troller design, the H2 index is established to minimize the optimal
tracking performance, and the H∞ index is designed to minimize
the disturbance effect on the tracking error. A Stackelberg-
based non-zero sum game between the optimal controller and
the worst disturbance is established to design the mixed H2/H∞
optimal tracking controller. The designed optimal controller is
approximated online using reinforcement learning. Effectiveness
of the proposed method is demonstrated by two numerical
simulations and a hardware experiment on a quadcopter system.
Based on the proposed high-performance controller, engineers
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can design a high-performance robust optimal tracking controller
for uncertain nonlinear systems with extreme conditions of
disturbances and actuator saturation.

Index Terms—Prescribed performance control, Stackelberg
game, approximate optimal control, actor-critic, system identi-
fication

I. INTRODUCTION

IN real-world applications, tracking controller design for
nonlinear systems faces significant challenges due to in-

herent uncertainties [1] and external disturbances [2]. A cru-
cial challenge in designing effective tracking controllers lies
in achieving an optimal balance between robustness against
disturbances and control performance [3], [4]. This creates
a fundamental trade-off between system response speed and
disturbance rejection capabilities [5], as faster response speeds
often compromise robustness against disturbances [6]. Two
prominent control methodologies have been extensively stud-
ied to address these challenges: the H2 optimal performance
control [7] and the H∞ optimal robust control [8]. The H2 in-
dex aims to minimize the tracking error between system output
and desired trajectory [9], while the H∞ index focuses on min-
imizing the impact of disturbances on tracking performance
[10]. However, most existing methods tend to prioritize either
robustness or optimality, but not both simultaneously, which
limits their practical effectiveness in real-world applications
where both aspects are crucial [11].

To effectively balance control performance and robustness
in tracking controller design, mixed H2/H∞ control has
emerged as a powerful approach [12], [13]. This method
integrates both H2 and H∞ performance indices through
a game-theoretic framework, where the optimal controller
minimizes the H2 index while the worst-case disturbance
maximizes the H∞ index [14]. A hierarchical Stackelberg
game structure has been incorporated into this framework
[15], [16], establishing a leader-follower decision-making pro-
cess that effectively handles the competing objectives. Robust
game-theoretic approaches using Nash equilibrium to handle
model uncertainties is investigated in [17]. The Hamiltonian-
driven methods for robust optimal stabilization of Stackelberg
game is discussed in [18]. For partially unknown stochastic
systems, mixed H2/H∞ learning-based control algorithms is
proposed in [19], [20]; While literature [21], [22] investigate
data-driven optimized Stackelberg game for nonlinear system
control. For the discrete-time formulations incorporating both
performance indices, the mixed H2/H∞ control is investigated
in [23]. However, most existing mixed H2/H∞ methods focus
primarily on stabilization and optimality without explicitly
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considering performance constraints. This limitation motivates
our research to develop an integrated solution that combines
mixed H2/H∞ control with prescribed performance bounds
for nonlinear tracking systems.

Uncertainties in real-world applications of nonlinear sys-
tem tracking control pose significant safety challenges, as
unforeseeable disturbances may drive operating states beyond
acceptable limits. To address this critical issue, prescribed per-
formance control (PPC) has emerged as an effective approach
to constrain tracking errors within predefined state bounds.
Significant developments in PPC include robust methods for
spacecraft attitude control under external disturbances [24],
and quadcopter trajectory tracking with specific operating
constraints [25], [26]. To enhance control performance under
temporal constraints, finite-time PPC methods have been de-
veloped [27]–[29]. For extreme operating conditions involving
actuator saturation and faults, adaptive PPC schemes have
been proposed to maintain safe system operation [30], [31].
To optimize computational and communication resources,
event-triggered PPC mechanisms have been investigated [32],
[33]. These developments demonstrate that PPC provides
a systematic framework for guaranteeing bounded tracking
performance in nonlinear systems, effectively addressing both
safety constraints and control objectives simultaneously.

Another common issue in the real-world application of
tracking control is the uncertainty or incompleteness of the
system model [34], [35]. To address this problem, the re-
inforcement learning (RL) method is proposed to learn the
optimal value function and controller. Among the RL methods,
one of them is the model-free RL [36]–[38]. Q-learning
algorithm is implemented to learn the optimal stabilizing
controller without the prior knowledge of system dynamics
in [39]. Integral RL is investigated to approximate the optimal
controller for partially unknown nonlinear systems in [40],
[41]. The above-mentioned methods are operated in an off-
policy offline manner, which requires a large amount of data to
train the optimal controller. Another category of RL methods
is the model-based RL [42], [43], which mostly requires
the pre-known system model to train the optimal controller
online. An actor-critic-identifier (ACI) structure is investigated
to obtain the optimal value function, controller and drifted
system parameters online in [44], [45]. In [46], an ACI-based
control algorithm is established to approximate the optimal
tracking controller for a nonlinear system with prescribed
state constraints. To summarize, the ACI algorithm is capable
of learning optimal controllers and identifying the uncertain
system parameters online simultaneously, which is suitable for
the tracking control of uncertain nonlinear systems.

Motivated by the above discussions, this paper investigates a
mixed H2/H∞ optimal prescribed performance tracking con-
trol problem for uncertain nonlinear systems. A Stackelberg
game-based mixed H2/H∞-PPC-ACI controller is designed to
track the desired trajectories under prescribed state constraints
with the existence of disturbances and actuator saturation.
Contributions of the paper are summarized in the following
points:

1) A high-performance robust optimal tracking controller
is designed for uncertain nonlinear tracking systems. To

maintain system states within safe operating bounds, a
PPC mechanism is incorporated to guarantee predefined
tracking performance constraints. Through the design
of an H∞ index for robustness and an H2 index for
optimality, a Stackelberg game framework is established
to synthesize a mixed H2/H∞ optimal controller. This
integrated approach achieves superior performance in
balancing robustness and optimality while enforcing state
constraints compared to existing methods [21], [41], [46].

2) The optimal control and worst-case disturbance policies
derived from the Stackelberg game are approximated
using reinforcement learning techniques. An actor-critic-
identifier (ACI) structure is developed to simultaneously
approximate the optimal value functions and controllers
for both H2 and H∞ objectives, while an online sys-
tem identifier estimates uncertain drift parameters in the
system dynamics. Through this unified ACI framework,
a mixed H2/H∞-PPC-ACI controller is synthesized that
achieves prescribed-performance robust optimal tracking.

3) Extensive validation of the proposed mixed H2/H∞-
PPC-ACI controller is conducted through two com-
prehensive numerical simulations and hardware experi-
ments on a quadcopter platform. The experimental re-
sults demonstrate that our method successfully achieves
prescribed-performance tracking control even in the pres-
ence of significant external disturbances and actuator
saturation, while maintaining robust and optimal perfor-
mance metrics.

The rest of the paper is organized as follows: Section II
introduces the nonlinear tracking system and PPC mechanism.
Section III formulates the problem of mixed H2/H∞ opti-
mal tracking control via the Stackelberg game. Section IV
presents the ACI algorithm for approximation of optimal value
functions and tracking controller. Section V-VI demonstrates
the effectiveness of our proposed mixed H2/H∞-PPC-ACI
control scheme by two numerical simulations and a hardware
experiment.

Notation: Throughout this paper, the following notations
are adopted: Rn denotes the n-dimensional Euclidean space;
∥ · ∥ represents the Euclidean norm for vectors or the induced
matrix norm; For any matrix A, λmin(A) and λmax(A) denote
its minimum and maximum eigenvalues, respectively; For a
function f(x), ∇f(x) denotes its gradient; In represents the
n × n identity matrix; For a set χ, χ denotes its closure; ∅
represents the empty set.

II. PRELIMINARIES

A. Nonlinear tracking system

Consider the following continuous-time nonlinear-affine
systems with disturbance:

ẋ(t) = f(x(t)) + g(x(t))u(t) + k(x(t))ω(t) (1)

where x(t) = [x1, ..., xn] ∈ Rn is the state of the system
in a vector form, f : Rn → Rn denotes the nonlinear drift
dynamics matrix, g : Rn → Rn×m is the input dynamics
matrix of the control input, u(t) ∈ Rm denote the control input
to the above system, k : Rn → Rn×m is the input dynamics
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matrix of the disturbance input, ω(t) ∈ Rm is the disturbance
input to the above system, and the drift dynamics matrix f(x),
input dynamics matrix g(x) and k(x) are all locally Lipschitz
continuous functions. Consider the following dynamics for the
state xd(t) ∈ Rn of desired trajectory:

ẋd(t) = fd(xd(t)) (2)

where fd : Rn → Rn is the drift dynamics matrix of
the desired trajectory’s state. Define the tracking error of
the desired trajectory as e(t) = x(t) − xd(t). Subtracting
the nonlinear system dynamics (1) and desired trajectory’s
dynamics (2), we can obtain the following tracking error
dynamics:

ė(t) = ẋ(t)− ẋd(t)

= [f(x)− fd(xd)] + g(x)u+ k(x)ω (3)

To track the desired trajectory within certain constraints,
PPC method is utilized in the next subsection to transform the
tracking error dynamics into prescribed performance tracking
error dynamics.

B. PPC-based tracking control

In this subsection, a transformation of the tracking error
dynamics is established to achieve PPC. First, we define the
performance bounds for the tracking error.

Definition 1. A smooth decreasing function ϱi(t) is called a
performance bound if it satisfies:

lim
t→∞

ϱi(t) = ϱi∞

lim
t→0

ϱi(t) = ϱi0 (4)

where ϱi0, ϱi∞ are positive constants for the i-th performance
bound, which satisfies ϱi0 > ϱi∞ > 0, (i = 1, 2, · · · , n).

To ensure the tracking error satisfies specific constraints
Xl,i ≤ ei ≤ Xu,i, the performance bounds are designed as
exponentially decreasing functions:

ϱi = (ϱi0 − ϱi∞)e−λit + ϱi∞, i = 1, 2, · · · , n (5)

where λi > 0 is the decay rate of the i-th performance
bound. The lower and upper bounds of the i-th tracking
error are designed as Xl,i = −ζl,iϱi and Xu,i = ζu,iϱi,
where ζl,i, ζu,i ∈ (0,∞) are the user-specified parameters that
determine the performance bounds with asymmetric tracking
error constraints. The tracking error constrained by these
bounds satisfies Xl,i < ei < Xu,i for i = 1, 2, · · · , n. To
transform the tracking error within these bounds, the following
transformation is utilized:

ξi = tan

(
2πei − πXl,i − πXu,i

2Xu,i − 2Xl,i

)
ei =

Xl,i + Xu,i

2
+
Xu,i −Xl,i

π
arctan (ξi)

(6)

where ξi, i = 1, 2, · · · , n is the transformed tracking error.
With this transformation, when ξi is bounded, the original
tracking error ei will always stay within the prescribed bounds

[Xl,i,Xu,i]. Take the derivative of eq. (6), the transformed
dynamics of tracking error ξi could be obtained as:

ξ̇i =
∂ξi
∂ei

ėi +
∂ξi
∂Xl,i

Ẋl,i +
∂ξi
∂Xu,i

Ẋu,i =
∂ξi
∂ei

ėi +Ωi (7)

where ∂ξi
∂ei

= π sec2
(

2πei−πXl,i−πXu,i

2Xu,i−2Xl,i

)
/(2Xu,i − 2Xl,i), and

Ωi =
∂ξi
∂Xl,i
Ẋl,i+

∂ξi
∂Xu,i

Ẋu,i, i = 1, 2, · · · , n. Then the tracking
error dynamics is summarized in the following form:

ξ̇ = Hė+Ω (8)

where H = diag([∂ξ1/∂e1, ..., ∂ξn/∂en]) ∈ Rn, Ω =
[Ω1, ...,Ωn]

⊤. Accordingly, the original system (1), dynamics
of the transformed tracking error (8) and dynamics of desired
trajectory (2) could be augmented as the following dynamics:{

Ẋ =F (X) +G(X)U +K(X)ω

Y =H(X)
(9)

where X = [x⊤, ξ⊤, x⊤
d ]

⊤ ∈ R3×n is the augmented state
of above augmented system, U = [u⊤, u⊤, 01×m]⊤ ∈ R3×m

is the augmented control input, Y is the output of system
performance, and dynamics F,G,K,H are defined as:

F =

 f(x(t))
H (f(x(t))− fd(xd(t))) + Ω

fd(xd(t))

 , K =

 k(x(t))
Hk(x(t))
0n×m

 ,

G =

g(x(t)) 0n×n 0n×m

0n×n Hg(x(t)) 0n×m

0n×m 0n×m 0n×m

 , H =

[√
Qξ(t)√
Ψ(u)

]

where Ψ(u) = 2R
∫ U

0

(
µ tanh−1 (ζU/µ)

)
dζU is the satu-

rated control input penalty term, Q and R are positive definite
penalty matrices. Therefore, the problem of optimal tracking
control under prescribed performance could be formulated.
The objective of this paper is to design an optimal control
input U(t) to ensure that the tracking error ξ(t) could always
be kept within the performance bounds Xl,i ≤ ei ≤ Xu,i,
i = 1, 2, · · · , n. To solve this problem, next section will
introduce the design of the optimal tracking controller that
mixes H2 and H∞ index via the Stackelberg game.

Remark 1. The PPC-based tracking control is designed to
maintain that the tracking error is remained in the defined
performance bounds. In real-world applications of tracking
control, uncertainties [25], disturbances [27], and actuator
faults [47] are inevitable. Compared with the other tracking
control methods, such as robust tracking control [14], [39],
approximate optimal tracking control [34], and sliding mode
control [48], PPC is designed to achieve tracking with pre-
defined error constraints, which could achieves tracking the
desired trajectory effectively and restrain the tracking error
within defined performance bounds.

III. PROBLEM FORMULATION: MIXED H2/H∞ OPTIMAL
TRACKING CONTROL WITH INPUT SATURATION

Considering the augmented dynamics system (9), a Stack-
elberg game-based mixed H2/H∞ optimal tracking controller
with input saturation is designed in this section.
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To obtain H2 performance feedback control law u(x) under
H∞ performance disturbance, the definition of finite L2 gain
stable is given first.

Definition 2. (Finite L2-gain stable) Considering the non-
linear system in (9), the system is finite L2-gain stable if
there exists a positive constant γ, which satisfies that for any
bounded input ω(t), the output y(t) is bounded and satisfies:∫ ∞

0

∥Y (t)∥2dt ≤ γ2

∫ ∞

0

∥ω∥2dτ (10)

To design the optimal controller that mixes H2 index and
H∞ index, the following quadratic form H2 and H∞ indexes
for nonlinear system (9) are defined:

J1(X0, U, ω) =

∫ ∞

t

∥Y ∥2dτ =

∫ ∞

t

(
ξ⊤Qξ +Ψ(U)

)
dτ

(11)

J2(X0, U, ω) =

∫ ∞

t

∥Y ∥2dτ − γ2∥ω∥2

=

∫ ∞

t

(
ξ⊤Qξ +Ψ(U)− γ2∥ω∥2

)
dτ (12)

where γ is the disturbance attenuation level, J1 in eq. (11) is
the performance index that reflects the H2 performance, and
J2 in eq. (12) is the index for the H∞ performance. With
the establishment of the performance indexes, the problem of
mixed H2/H∞ could be formulated.

Problem 1. (Mixed H2/H∞ optimal tracking control) Given
the nonlinear system (9), find the robust optimal tracking
control input U∗(·) that satisifies:

1) Ensures the tracking error ξ(t) remains in the prescribed
performance bounds ei ∈ (Xl,i,Xu,i), i = 1, 2, · · · , n
when the initial states satisfies ei(0) = 0.

2) The optimal tracking controller U∗ minimizes the per-
formance index J1 in eq. (11) to achieve the H2 perfor-
mance, and the worst-case disturbance ω∗(t) maximizes
the performance index J2 in eq. (12) to achieve the H∞
performance, that is,

J1(X0, U
∗(t), ω∗(t)) = min

U∈ΩU

J1(X0, U, ω
∗(t))

J2(X0, U(t), ω∗(t)) = max
ω∈ΩW

J2(X0, U(t), ω(t))

3) The closed-loop system under the control of U∗ is finite
L2-gain stable, satisfying the condition in eq. (10).

To solve the mixed H2/H∞ optimal tracking control prob-
lem given in Problem 1, Stackelberg game is established to
derive the robust optimal tracking control input. First, the
definition of the Stackelberg game is given.

Definition 3. (Stackelberg game [17]) Given two players: the
leader L with the performance index (11), and the follower F
with the performance index (12). For the leader L, the control
strategy U ∈ ΩU is chosen based on the information collected
without the follower’s control strategy. However, the follower F
chooses the control strategy ω ∈ Ωω based on the information
including leader’s control strategy U , which means, for any
strategy U chosen by the leader L, the follower F will choose

an optimal control strategy ω∗(t) = w(U, t) to maximize the
performance index J2 in eq. (12):

J2(X0, U(t),w(U, t)) = max
w∈ΩW

J2(X0, U(t), ω(t))

where w : U → ω is a mapping. By considering the
strategy ω∗ = w(U, t) chosen by the follower F, the leader
L chooses the optimal control strategy U∗(t) to minimize the
performance index J1 in eq. (11):

J1(X0, U
∗(t),w(U∗, t)) = min

U∈ΩU

J1(X0, U(t),w(U∗, t))

Then the optimal strategy U∗ is called Stackelberg policy of
the leader L and ω∗ = w(U∗, t) is called Stackelberg policy
of the follower F.

Remark 2. In the Stackelberg game, the leader L derives
the optimal tracking control input that optimizes the H2 index
J1 in eq. (11), the follower F is the worst disturbance that
minimizes the H∞ performance index J2 in eq. (12). For the
sequence of the leader and follower, the follower is assumed
to derive a worst disturbance input ω∗ to minimize the H∞
performance index J2 with a regular control input U chosen
by the leader. Then the leader chooses the optimal tracking
control input U∗ subsequently, which minimizes the H2 index
J1 with the worst disturbance input ω∗ chosen by the follower.

Defining Stackelberg game, and the follower is going to
pursue the H∞ performance, the optimal value function J∗

2 of
the follower F could be obtained:

J∗
2 =max

ω
J2(X0, U, ω)

=max
ω

∫ ∞

t

(
γ2∥ω∥2 −X⊤QX −Ψ(U)

)
dτ (13)

Then the Hamiltonian of the follower is derived as:

HF (X,U, ω,∇J∗
2 ) =(∇J∗

2 )
⊤(F +GU +Kω)

+
(
γ2∥ω∥2 −X⊤QX −Ψ(U)

)
(14)

Take the derivative of Hamiltonian HF to disturbance input
ω, and solve the obtained derivative equation, the optimal
control input of the follower F could be obtained as:

ω∗(U) = argmax
ω

HF (X,U, ω,∇J∗
2 )

=− 1

2γ2
K⊤∇J∗

2 (15)

To obtain the optimal control input from the leader L
subsequently, a costate λ2 for the follower is defined as the
negative gradient of Hamiltonian HF to state X:

λ̇2 =− ∂HF

∂X

=−
(
∂F

∂X
+

∂G

∂X
U +

∂K

∂X
ω∗ +G

∂U⊤

∂X

)⊤

∇J∗
2

+ 2QX +
∂Ψ

∂U

∂U

∂X
(16)
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Taking the consideration of the follower’s H2 performance,
leader L’s optimal value function J∗

1 is minimized with costate
λ2 in eq. (16) as:

J∗
1 =min

U
J1(X0, U, ω

∗)

= min
U

∫ ∞

t

(
X⊤QX +Ψ(U) + η⊤λ̇2

)
dτ (17)

where η denotes control input’s Lagrange multiplier. Then
leader’s Hamiltonian HL is constructed as the following form:

HL (X,U, ω∗,∇J∗
1 , η) = (∇J∗

1 )
⊤
(F +GU +Kω) + η⊤λ̇2

+
(
X⊤QX +Ψ(U)

)
(18)

The optimal control input U∗ of leader L is derived by
minimizing Hamiltonian HL with respect to control input U :

U∗(ω∗) = argmin
U

HL (X,U, ω∗,∇J∗
1 , η)

=− µ tanh

(
R−1

2µ

(
G⊤∇J∗

1 −∇J∗
2
⊤ ∂G

∂X
η

))
The dynamics of the Lagrange multiplier y is derived as:

η̇(t) =− ∂HL

∂∇J∗
2

=−

[(
K

∂ω∗

∂∇J∗
2

)⊤

∇J∗
1 −

n∑
i=1

ηi

(
∂K

∂Xi

∂ω∗

∂∇J∗
2

)⊤

∇J∗
2

− (∇F +∇GU +∇Kω∗ +G∇U) η]

where ∇F , ∇G, ∇K are the gradient of F , G, K to state X .
To summarize the optimal control input of the leader and

the follower, by minimizing the Hamiltonian H1 and H2,
the optimal control policy of the leader and the follower are
obtained as:

U∗ = −µ tanh

(
R−1

2µ

(
G⊤∇J∗

1 −∇J∗
2
⊤ ∂G

∂X
η

))
ω∗ = − 1

2γ2
K⊤∇J∗

2

(19)

Due to the complexity of the nonlinear dynamics and the
mixed H2/H∞ performance indexes, it is difficult to obtain
the concrete expression of the optimal tracking control input
of leader L and the follower F from eq. (19). To obtain the
optimal control input U∗, we employed the reinforcement
learning-based approximation method in the next section. An
actor-critic-identifier structure is constructed to approximate
the optimal value function and the optimal control policy, with
uncertain drifted system parameters identified online.

IV. DESIGN OF ACTOR-CRITIC-IDENTIFIER

An actor-critic-identifier structure is designed to solve the
mixed H2/H∞ optimal tracking control problem through
approximations in this section. First, the above-mentioned
optimal value functions and control inputs are reconstructed
by the actor-critic neural network (NN). Then, uncertain drift
system parameters are identified online using an identifier.
With the identified system parameters and the reconstructed
optimal value functions and control inputs, corresponded bell-
man error is established. By minimizing the bellman error, the
actor-critic NNs are trained to obtain the approximated optimal
value functions and control inputs.

A. Approximation of value function via actor-critic

To approximate optimal value functions of leader and
follower, two actor-critic NNs are developed. Optimal value
functions are reconstructed as:

J∗
i (X) =W⊤

ciφci(X) + δci(X), i = 1, 2 (20)

∇J∗
i (X) =∇φ⊤

ci(X)Wci +∇δ⊤ci(X), i = 1, 2 (21)

where Wci ∈ Rnφci
×1, i = 1, 2 are the ideal weights of the

critic NNs for leader and follower, δci and δai, i = 1, 2 are
the construction errors of the actor-critic NNs. To obtain the
optimal control input, the actor NNs are constructed for the
approximation of optimal control inputs:

U∗(X) =− µ tanh

(
1

2µ

(
R−1G⊤(∇φ⊤

a1(X)Wa1+∇δ⊤a1
)

−
(
W⊤

a2∇φa2(X) +∇δa2
) ∂G
∂X

η

))
(22)

ω∗(X) =− K⊤

2γ2

(
∇φ⊤

a2(X)Wa2 +∇δ⊤a2(X)
)

(23)

where Wai ∈ Rnφai
×1, i = 1, 2 are the ideal weights of the

actor NNs for leader and follower. In the practice, the ideal
weights Wci and Wai are unknown, estimation of NN weights
are proposed for the approximation

Ĵi(X) =Ŵ⊤
ciφci(X), i = 1, 2 (24)

Û(X) =− µ tanh

(
1

2µ

(
R−1G⊤∇φ⊤

a1(X)Ŵa1

−Ŵ⊤
a2∇φa2(X)

∂G

∂X
η

))
(25)

ω̂(X) =− K⊤

2γ2
∇φ⊤

a2(X)Ŵa2 (26)

where Ŵci ∈ Rnφ×1, i = 1, 2 are the estimated weights of the
critic NNs for the leader and the follower. Ŵai, i = 1, 2 are
the estimated weights of the actor NNs.

By inserting the estimated value functions and control inputs
into the Hamilton function, the Bellman errors under un-drifted
system parameters are obtained:

εi(X, Ŵci, Ŵai) =r(X, Û , ω̂) +
(
∇φ⊤

c1Ŵc1

)⊤
×
(
F +GÛ(X) +Kω̂(X)

)
(27)

where εi(x, Ŵci, Ŵai) is the Bellman error of the i-th agent,
i = 1, 2. The structure of the proposed mixed H2/H∞
prescribed-performance optimal control via Stackelberg game
is shown in Fig. 1, in which critic NNs approximate optimal
value functions, actor NNs approximate optimal control inputs,
and the identifier online identifies the uncertain drift system
parameters. Training of the actor-critic-identifier is accelerated
by the concurrent learning-based gradient-descent update law
with an experience stack (or replay buffer) to store the histori-
cal data samples. The outputs of the actor NNs are mixed with
Stackelberg game to obtain the mixed H2/H∞-PPC optimal
control inputs. To learn the actor-critic NNs, Bellman errors
are constructed to update actor-critic NN weights. However,
in uncertain systems with drifted parameters, Bellman errors
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Fig. 1. Structure of the proposed mixed H2/H∞-PPC-ACI control scheme.

are usually not available. To obtain the Bellman errors, an
identifier is designed to online identify the uncertain drift
system parameters in the next subsection.

B. System identification via identifier

To identify the uncertain drift system parameters, the fol-
lowing identifier of the drift dynamics is designed:

F (X) = Y (X) θ + δθ (X) (28)

where Y ∈ Rn×p is the basis element of the identifier and
θ ∈ Rp is the unknown drift sytem parameters, which is not
available, and δθ is the approximation error of the identifier.
To obtain the unknown drift system parameters θ, estimate the
unknown parameter with an estimation θ̂ ∈ Rp, the estimated
drift dynamics is obtained as:

F̂ (X) = Y (X) θ̂ (29)

The estimated drift dynamics F̂ (X) is used to approximate
the optimal value functions and control inputs, and update
the estimated parameter θ̂ online by the follwing concurent
learning-based gradient-descent update law:

˙̂
θ =

Γθkθ
M

M∑
j=1

Y ⊤ (Xj
) (

F
(
Xj
)
− Y

(
Xj
)
θ̂
)

(30)

where Γθ ∈ Rp×p is an positive definite matrix for tunning, kθ
is the learning rate, and M is the amount of historical data in
the experience replay buffer. Updating the parameters of the
identifier, the unknown drift system parameters θ are identified
online, and the drift dynamics F (X) is obtained. With the
identified drift dynamics F (X), the estimated Bellman errors
with uncertain system parameters could be obtained:

ε̂1(X, Û , ω̂) =(∇J∗
1 )

⊤(Y (X) θ̂ +GÛ +Kω̂)

+
(
X⊤QX +Ψ(Û)

)
+ η⊤λ̇2 (31)

ε̂2(X, Û , ω̂) =(∇J∗
2 )

⊤(Y (X) θ̂ +GÛ +Kω̂)

+
(
γ2∥ω̂∥2 −X⊤QX −Ψ(Û)

)
(32)

where ε̂1(X, Û(X), ω̂(X)) and ε̂2(X, Û(X), ω̂(X)) are the
estimated Bellman errors of the leader and the follower with
uncertain system parameters, respectively.

C. Online value function approximation

In this subsection, weights of actor-critic NNs are updated
online by minimizing the Bellman errors. For the update of
the leader agent, Then the historical stack data set of leader
agent {Û(t), ε̂1(t), {Û j(t), ε̂j1(t)}Nj=1} is collected without
extrapolation but stored as a stack, where {Û j(t), ε̂j1(t)}
is the j-th historical stored data collection. Same as the
leader agent, the follower agent’s trajectories data set is
collected without extrapolation but stored as a a stack, i.e.
{ω̂(t), ε̂2(t), {ω̂j(t), ε̂j2(t)}Nj=1}. The weights of the leader-
follower agents’ actor-critic NNs are updated by minimizing
the following squared loss function:

Ei = ε̂⊤i ε̂i +
∑

k=1···N

ε̂ki
⊤ε̂ki , i = 1, 2 (33)

Then a concurrent learning-based gradient descent update
law is utilized to train the critic NNs weights:

˙̂
Wci =

−kci,1ε̂iσi(
σ⊤
i σi + 1

)2 − N∑
k=1

kci,2ε̂
k
i σ

k
i

N
(
σk
i
⊤σk

i + 1
)2 , i = 1, 2 (34)

where kci,j > 0, i = l, f, j = 1, 2 are the learning rates for
the critic NNs. The regression vectors σi = ∇φ⊤

ci(X)(F +
GÛ +Kω̂), σk

i = ∇φ⊤
ci(X

k)(F +GÛk +Kω̂k), where Xk

is the k-th historical data sample. For the update of the actor
NNs, the weights are updated based on a projection-based
gradient descent method to maintain numerical stability and
prevent parameter divergence [49], [50]. The weights update
law takes the following form:

˙̂
Wai = Γ

(
Fikai

(
Ŵci − Ŵai

))
, i = 1, 2 (35)

where kai > 0, i = 1, 2 are the learning rates, Fi ∈
Rnφ×nφ , i = 1, 2 are positive definite matrices for weight
updates, and Γ(·) is a projection operator that ensures the
weights stay within predefined bounds. which is defined for
each agent’s weights Ŵai, i = 1, 2 as:

Γ(
˙̂
Wai)=

−Fikai

(
Ŵai − Ŵci

)
, if αi < 0

−Fikai

(
Ŵai − Ŵci

)
+ βi, otherwise

(36)

where γi(Ŵai) are smooth convex functions defining fea-
sible weight regions, αi = (Ŵci − Ŵai)

⊤∇γi, βi =
kai∇γi∇γ⊤

i /(∇γ⊤
i kai∇γi)Fi(Ŵai − Ŵci) is a correction

term, and ∇γi represents the gradient of γi. The projec-
tion mechanism ensures stable learning behavior by keep-
ing weights within predefined feasible regions, maintaining
smooth parameter adaptation, and preventing numerical insta-
bilities and divergence through constrained updates.

Then the online learning approximation of optimal value
functions and control inputs is achieved by the actor-critic
structure. The detailed procedure of online learning algorithm
for mixed H2/H∞-PPC-ACI control scheme is shown in
Algorithm 1.

D. Stability analysis

In this subsection, with the utilization of the Lyapunov
stability theory, closed-loop system states and the estimated
errors of actor-critic NNs are proved to be ultimate uniform
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Algorithm 1 Mixed H2/H∞-PPC-ACI Online Learning Al-
gorithm

1: Initialize:
• Actor-critic-identifier NN weights: Ŵci, Ŵai, i = 1, 2
• Learning rates: kci,j , kai, i = 1, 2, j = 1, 2
• Projection matrices: Fi, i = 1, 2
• Performance bounds: ϱi0, ϱi∞, λi, ζl,i, ζu,i
• Experience stacks: {Û(t), ε̂1(t), {Û j , ε̂j1}Nj=1} ← ∅,
{ω̂(t), ε̂2(t), {ω̂j , ε̂j2}Nj=1} ← ∅

2: while t < Tend do
3: ξi ← Transform tracking error ei using (6)
4: X ← Construct augmented system state via (9)
5: Û(X)← Approximate optimal control via (25)
6: ω̂(X)← Approximate optimal disturbance via (26)
7: F̂ (X)← Identify uncertain drift dynamics via (29)
8: ε̂1, ε̂2 ← Calculate Bellman errors via (31) and (32)
9: Update experience stack:

• Leader: {Û(t), ε̂1(t), {Û j(t), ε̂j1(t)}Nj=1}
• Follower: {ω̂(t), ε̂2(t), {ω̂j(t), ε̂j2(t)}Nj=1}

10: Update parameters:
• Ŵci ← Update critic weights via (34)
• Ŵai ← Update actor weights via (35)
• θ̂ ← Update system parameters via (30)

11: Apply control input Û(X) to system
12: end while

bounded (UUB) under the proposed mixed H2/H∞ approxi-
mate optimal tracking control scheme. First, three assumptions
are given here for the proof.

Assumption 1. The following assumptions are given for the
stability analysis:

1) On a tight set X ∈ χ ∈ Rn, both F (X) and G(X) are
Lipschitz continuous with F (0) = 0, and G(X) satisfied
bounded condition ∥G(X)∥ ≤ GH for all X ∈ χ.

2) Cost matrix Q and R are bounded, such that λQ ≤
∥Q∥ ≤ λ̄Q, λR ≤ ∥R∥ ≤ λ̄R, where constants
λQ, λR ≥ 0 and λ̄q, λ̄R > 0.

Assumption 2. Assuming that the following parameters and
operators are bounded: ∥Ŵci∥ ≤ WHi, ∥σi(X)∥ ≤ σHi,
∥∇σi(X)∥ ≤ σD,Hi, ∥φi(X)∥ ≤ φHi, ∥∇φi(X)∥ ≤ φD,Hi,
∥δi(X)∥ ≤ δHi, ∥∇δi(X)∥ ≤ δD,Hi,

Assumption 3. Assuming that the online collected and ex-
trapolated data set for the weights update law satisfies the
following excitation condition for the i-th agent (i = 1, 2):

Λ1,iIm,i ⩽
∫ t+T

t

(
σi(τ)σi(τ)

⊤/ρi(τ)
)
dτ,

Λ2,iIm,i ⩽ inf
t∈Rt≥t0

1

N

(
N∑

k=1

σk
i (t)σ

k
i (t)

⊤/ρki (t)

)
,

Λ3,iIm,i ⩽
∫ t+T

t

1

N

(
N∑

k=1

σk
i (τ)σ

k
i (τ)

⊤/ρki (τ)

)
dτ,

where ρi(t) =
(
σ⊤
i σi + 1

)2
, ρki (t) =

(
σk
i
⊤σk

i + 1
)2

, Im,i is

the identity matrix of size m, and at least one of the non-
negative constants Λ1,i,Λ2,i,Λ3,i is positive.

Based on the design of the controller (25) and disturbance
(26), the following inequality could be obtained:∥∥∥U∗(X)− Û(X)

∥∥∥2 ≤ Σ1W̃
⊤
a1W̃a1 +Π1 (37)

∥ω∗(X)− ω̂(X)∥2 ≤ Σ2W̃
⊤
a2W̃a2 +Π2 (38)

where Σi is a upper bound related with φH,i, φD,Hi, σHi,
σD,Hi, Πui

is a upper bound related with δD,Hi. The stability
analysis of closed-loop system state and the estimation errors
of actor-critic NNs is given in the following theoretical result.

Theorem 1. Considering the augmented system dynamics
(9) and the proposed mixed H2/H∞ prescribed-performance
approximate optimal tracking control scheme in Algorithm
1, Assumption 1,2 and 3 are satisfied, The actor-critic NNs
are updated by the adaptive update law (34) and (35). The
control input and disturbance are estimated by (25) and
(26). Then the close-loop system states X and weights errors
[W̃⊤

c1, W̃
⊤
c2, W̃

⊤
a1, W̃

⊤
a2]

⊤ will be UUB provided that:

∥Z∥ ≥

√
Φres

λmin(H)
(39)

where Z =
[
X⊤, W̃⊤

c1, W̃
⊤
c2, W̃

⊤
a1, W̃

⊤
a2

]⊤
.

Proof. Theoretical result of Theorem 1 is analyzed utilizing
the Lyapunov stability theory. Choosing the Lyapunov function
in the following form:

V =

2∑
i=1

(
J∗
i +

1

2
W̃⊤

ci W̃ci +
1

2
W̃⊤

aiW̃ai

)
(40)

To simplify the analysis, the approximated Hamiltonian
error ε̂i, i = 1, 2, or Bellman error, is abbreviated to the
following form:

ε̂1 =− σ⊤
1 W̃c1 +

1

4
W̃a1GσW̃a1 +∆1(X) + ξH1, (41a)

ε̂2 =− σ⊤
2 W̃c2 +

1

4

(
W̃a2KσW̃a2 − W̃a1GσW̃a1

)
+∆2(X) + ξH2, (41b)

ε̂k1 =− (σk
1 )

⊤W̃c1 +
1

4
W̃a1G

k
σW̃a1 +∆k

1(X), (41c)

ε̂k2 =− (σk
2 )

⊤W̃c2 +
1

4

(
W̃a2K

k
σW̃a2 − W̃a1G

k
σW̃a1

)
+∆k

2(X) (41d)

where the Gσ(X)=∇φ⊤
a1G(X)R−1

1 G⊤∇φ⊤
a1(X),Kσ(X)=

∇φ⊤
a2(X)KR−1

2 K⊤∇φ⊤
a1(X)/

(
2γ2
)
, Gk

σ=Gσ(X
K), Kk

σ=
Kσ(X

K), and ∆,∆k : Rni → R are uniformly bounded on
χ, ∥∆∥ and ∥∆k∥ decrease as ∥∇δ∥ and ∥∇W∥ decrease.

Then the derivative of the Lyapunov function V is

V̇=
2∑

i=1

[
∇J∗

i (F+GU+Kω)+W̃⊤
ci

˙̂
W⊤

ci +W̃⊤
ai

˙̂
W⊤

ai

]
(42)

Substituting the (∇J∗
i )

⊤
F (X) term from (18) and (14)

into (42), and employing the Bellman errors from (41), the
derivative can be rewritten as:
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V̇ = −X⊤ (Q1 −Q2)X −Ψ(U)− γ2∥ω∥2 − η⊤λ̇2

− W̃⊤
c1

(
−kc1,1

σ1

ρ1

(
−σ⊤

1 W̃c1 +
1

4
W̃⊤

a1GσW̃a1 +∆1

))
− W̃⊤

c2

(
−kc2,1

σ2

ρ2

(
−σ⊤

2 W̃c2 +
1

4
W̃a2KσW̃a2

−1

4
W̃a1GσW̃a1 +∆2

))
+ W̃⊤

a1

(
−ka1F1

(
Ŵa1 − Ŵc1

))
+ W̃⊤

a2

(
−ka2F2

(
Ŵa2 − Ŵc2

))
− W̃⊤

c1

(
−kc1,2

N

N∑
k=1

σk
1

ρk1

1

4
W̃⊤

a1G
k
σW̃a1

)

− W̃⊤
c2

(
−kc2,2

N

N∑
k=1

σk
2

ρk2

1

4

(
W̃⊤

a2K
k
σW̃a2 − W̃⊤

a1G
k
σW̃a1

))

−W̃⊤
c1

(
−kc12

N

N∑
k=1

σk
1

ρk1

(
−(σk

1 )
⊤W̃a1 +∆k

1

)))

−W̃⊤
c2

(
−kc22

N

N∑
k=1

σk
2

ρk2

(
−(σk

2 )
⊤W̃a2 +∆k

2

)))
(43)

Substitute the inequalities (37) and (38) and employing
Young’s inequality and conditions from assumptions 1-3, the
derivative V̇ could be rewritten as:

V̇ ≤ − ZT


h1 0 0 0 0
0 h2 0 0 0
0 h3 h4 0 0
0 h5 0 h6 0
0 0 h7 0 h8

Z +Φres

= −ZTHZ +Φres

where h1 = λQ1 − λQ2, h2 = 1
2kc1,1σ1σ

T
1 + 1

2kc1,2Λ2,1Im,1,
h3 = (kc1,1 + kc2,1)σ1(t)σ

T
2 (t), h4 = 1

2kc2,1σ2(t)σ
T
2 (t) +

1
2kc2,2Λ2,2Im,2, h5 = −F1Im,1, h6 = F1Im,1 −
λ̄R,1Σu1

Im,1, h7 = −F2Im,2, h8 = F2Im,2 + γ2Σu2
Im,2,

and

Φres =
1

2
kc1,1

(
1

4
W̃T

a1GσW̃a1 + ξH1 +∆1

)2

+ γ2Πu2

+
1

2
kc2,1

(
1

4
W̃T

a2KσW̃a2 −
1

4
W̃T

a1GσW̃a1 +∆2

)2

+
1

2
kc1,2

(
1

4
W̃T

a1Gσ,kW̃a1 +∆k
1

)2

+ λ̄R,1Πu1

+
1

2
kc2,2

(
1

4
W̃T

a2Kσ,kW̃a2 −
1

4
W̃T

a1Gσ,kW̃a1 +∆k
2

)2

When a suitable positive definite matrix H is chosen, the
closed-loop system state X and the estimation errors of actor-

critic NNs
[
W̃⊤

c1, W̃
⊤
a1, W̃

⊤
c2, W̃

⊤
a2

]⊤
will end up being UUB

when the condition (39) is satisfied. The proof is completed.

V. SIMULATIONS

In this section, two simulation cases of the proposed mixed
H2/H∞-PPC-ACI control scheme is provided.

A. Case 1: Verification of the PPC mechanism

Simulation setup: In this case, performance of the proposed
mixed H2/H∞-PPC-ACI scheme is demonstrated by an un-
certain drift nonlinear system with the following dynamics:

f =

[
x1 x2 0 0
0 0 x1 x2(cos(2x1) + 2)

]
θ1
θ2
θ3
θ4

 (44)

g =

[
sin(2x1 + 1) + 2 0

0 cos(2x1) + 2

]
(45)

where θ = [θ1, θ2, θ3, θ4]
⊤ is the drifted parameter. Its ac-

tual value is selected as θ = [−1, 1,−0.5,−0.5]⊤. The basis of
NNs if selected as ϕ =

[
ξ21 , ξ1ξ2, ξ

2
2 , ξ

2
1ξ2, ξ1ξ

2
2 , ξ

2
1ξ

2
2

]
, The ini-

tial weights Wcij and Waij are all set to 1. The control objec-
tive is to track the reference signal ẋd(t) = [−1, 1;−2, 1]xd(t)
with the initial condition xd(0) = [1, 1.5]⊤. Simulations
are conducted using MATLAB R2023b Simulink on a PC
equipped with an Intel Core i3-12100F CPU (3.3 GHz) and
24 GB of RAM. The ODEs are solved using the fourth-order
Runge-Kutta method with a fixed step size of T = 0.001 s.
The simulation runs for a total duration of tend = 5 s. The
detailed simulation parameters are shown in Table I.

TABLE I
PARAMETERS OF SIMULATION CASE 1 AND CASE 2.

Mixed H2/H∞ PPC transform Update law

R1 = R2 = I2 ϱi0 = 0.6 k1,c1 = k2,c1 = 0.5

Q1 = I3 ϱi∞ = 0.01 k1,c2 = k2,c2 = 0.1

Q2 = 20I2 λ = 0.9 k1,a = k2,a = 1

µsat = 0.5 ζl,i = ζu,i = 1 F1 = I3, F2 = I6

Results: The main results of this case are shown in Fig.
2-3. Revolution of the actor-critic NNs weights is shown in
Fig 2(a). Tracking control’s performance is illustrated in Fig
2(b), which shows that the system states are constrained within
the pre-defined performance bounds. The value of the lagrange
multiplier y and the Bellman error are shown in Fig 2(c). Fig 3
shows the estimation of the uncertain drift system parameters.

To further test the effectiveness of proposed mixed H2/H∞-
PPC-ACI scheme, comparison simulations are tested with: 1.
approximate optimal controller (AOC); 2. approximate opti-
mal controller with fixed weights (AOC-fixed); 3. prescribed-
performance controller with fixed weights (PPC-fixed); 4. the
proposed mixed H2/H∞-PPC-ACI (PPC). As shown in Fig
5(a), the tracking error of the proposed scheme is smaller than
the other controllers, which is always maintained within the
prescribed performance bounds. Comparison of the cumulated
cost is shown in Fig 4, which indicates that the proposed
scheme take the least resources to achieve the tracking control.
The detailed controller performance comparison results are
shown in Table II.

B. Case 2: Verification of the mixed H2/H∞ mechanism

To verify the anti-disturbance effectiveness of proposed
mixed H2/H∞ mechanism, experiments are conducted with
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(a) Revolution weights of the neural networks. (b) The tracking performance of the system. (c) Value of function y and the Bellman error.

Fig. 2. Simulation results of the mixed H2/H∞-PPC-ACI scheme.
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Fig. 3. The estimation of the uncertain drift system parameters.

Fig. 4. Comparison of costs with different methods in several periods.

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON OF CONTROL METHODS

Performance Metrics Proposed AOC AOC-fixed PPC-fixed

Overall Cost 107.02∗ 133.50 134.66 113.86

Initial Phase (0-2s) 84.85∗ 113.04 113.87 91.82

Middle Phase (2-6s) 15.69 14.21∗ 14.50 15.56

Final Phase (6-10s) 6.47 6.24∗ 6.28 6.48

Control Cost 106.88∗ 133.06 134.24 113.73

∗Best performance for each metric

the same system dynamics (44) and (45) from the previous
case. H∞ approximate optimal controller and H2 approximate
optimal controller are designed for comparison.

The disturbance imposed on the system is formulated as:

d(t)=15e−
t
3 tanh(0.1t)

4∑
i=1

[sin(2it) + cos((2i+1)t)] (46)

The comparison results are shown in Fig 5(b)-5(c). The
tracking performance of the system under disturbance (46)
is shown in Fig 5(b), in which the proposed scheme performs
faster convergence than the H∞ method. Fig 5(c) demonstrates
the comparison of normalized tracking errors from H2/H∞
and H∞ under large disturbance inputs, which shows that the
proposed scheme achieves smaller tracking errors under the
same disturbance. The results show that the proposed control
scheme performs great in the presence of disturbances.

VI. HARDWARE EXPERIMENTS

In this section, a quadcopter-based physical experiments are
conducted to further verify the effectiveness of the proposed
mixed H2/H∞-PPC-ACI control scheme.

A. Experiment Setup

The experiment is performed on a quadcopter tracking con-
trol case. and the follower quadcopter is an X150 quadcopter
equipped with an RK3566 processor and 4-GB RAM. The
real-time position of the quadcopter are obtained by an 8-
cameras OptiTrack motion capture system. The developed con-
troller (25) is updated and calculated online by a workstation
computer equipped with an Intel i7-12700 processor (@3.60
GHz) and 32-GB RAM. The control frequency is selected
as 30 Hz, and the fixed time step is ∆t = 1/30 s. The
control input is formulated as a velocity command transmit
to the quadcopter through 5GHz WI-FI channel. The detailed
hardware equipment used in this experiment is shown in Fig.
6. To reduce the computation of online learning Algorithm 1
and accelerate the convergence of the neural network, the state-
following neural network from [44], [45] is utilized for the
actor-critic structure. The initial weights of the leader’s critic
NN are set as Ŵ1(i) = 10, i = 1, 2, 3. The initial weights of
the follower’s critic NN are chosen randomly from a uniform
distribution in the range of Ŵ2(i) ∈ [0.5, 2.5], i = 1, 2, 3.

Note that due to the wind, the aerodynamic forces, and the
sensor noise, there exist unknown disturbances in the real-
world quadcopter tracking control. To verify the prescribed
performance of the proposed control scheme, the desired
trajectory is designed as a circle with a radius of r = 1.5 m
and a period of T = 63 seconds, and a comparison experiment
with the approximate optimal controller (AOC) is conducted.
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(a) Comparison of tracking error (b) Comparison of system states
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(c) H2/H∞ performance index and disturbance

Fig. 5. Performance comparison of the proposed mixed H2/H∞-PPC-ACI scheme and other controllers.

Fig. 6. Quadcopter and motion capture system for hardware experiment.

B. Experiment Results

The experimental results are presented in Figs. 7-9. Fig. 7
illustrates the key phases of autonomous navigation, demon-
strating precise trajectory tracking capabilities. The planar (X-
Y ) position tracking shown in Fig. 8(a) confirms that the quad-
copter maintains motion within the prescribed performance
bounds, with maximum deviation of 0.25m. Fig. 8(b) presents
a comparative analysis between the proposed scheme and
AOC, where our approach achieves 88.08% reduction in mean
squared error (MSE) for the X-axis and 88.33% reduction for
the Y -axis. The critic neural network weight evolution in Fig.
8(c) demonstrates stable online learning convergence after 85s.
The three-dimensional trajectory visualization in Fig. 9 further
validates the tracking performance, with RMS position error
below 0.1m throughout the flight test.

The effectiveness of the proposed control scheme is further
evaluated by calculating various performance metrics:

• Tracking Performance
– Mean squared error (MSE) for both X and Y axes
– Total MSE for overall tracking accuracy
– Maximum absolute tracking error

• Control Input Efficiency
– Total energy consumption
– Mean control input values for X and Y axes
– Peak control input magnitude

• Overall Performance
– Root mean square (RMS) values for X and Y axes
– Total RMS across both axes
– Individual cost metrics for X and Y axes
– Aggregate total control cost

The detailed performance comparison results are shown in

Table III. The proposed scheme has a better tracking perfor-
mance and anti-disturbance performance than the approximate
optimal controller.

TABLE III
PERFORMANCE COMPARISON BETWEEN AOC AND PROPOSED

CONTROLLER

Metrics AOC Proposed PPC

Tracking Performance

MSE (X-axis) 0.0688 0.0082 ↓

MSE (Y-axis) 0.0644 0.0075 ↓

Total MSE 0.0666 0.0078 ↓

Max Error 0.5324 0.2540 ↓

Control Input

Total Energy 5.5964 5.3174 ↓

Mean Input (X) 0.1001 0.1054

Mean Input (Y) 0.1016 0.0995 ↓

Peak Input 0.3299 ↓ 0.3445

Overall Performance

RMS (X) 0.1193 ↓ 0.1241

RMS (Y) 0.1253 0.1142 ↓

Total RMS 0.1224 0.1193 ↓

Cost (X) 2.6598 ↓ 2.8789

Cost (Y) 2.9352 2.4380 ↓

Total Cost 5.5951 5.3169 ↓

VII. CONCLUSION

To achieve the tracking control of nonlinear systems with
unknown disturbances and system uncertainties, a novel mixed
H2/H∞ prescribed performance approximate optimal tracking
control scheme is proposed in this paper. The robust optimal
controller is designed by optimizing the H2 and the H∞
performance index in a Stackelberg game framework. The
designed optimal tracking controller is then approximated by
an actor-critic-identifier structure with prescribed performance
bounds. The stability of the closed-loop system is analyzed
using the Lyapunov theory. The effectiveness of the proposed
scheme is verified by two simulations and a quadcopter
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(a) Northwest flight (t = 57s) (b) Southeast flight (t = 90s) (c) Northeast flight (t = 104s) (d) Landing (t = 201s)

Fig. 7. Key phases of quadcopter autonomous navigation and trajectory tracking experiment.

(a) Planar position tracking (X-Y coordinates) (b) Position tracking errors analysis
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(c) Critic neural network weight evolution

Fig. 8. Experimental results showing quadcopter control performance and learning dynamics.

Fig. 9. Three-dimensional visualization of quadcopter autonomous navigation
trajectory showing position tracking performance.

hardware experiment. The results show that the proposed
scheme has a better tracking performance and anti-disturbance
performance than approximate optimal controller. For future
research, we will extend the proposed control scheme to
stochastic systems and multi-agent systems.
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